이벤트

[더맥소노미2024 세션 스케치VII] 생성 AI 시대에 고객경험 제고를 위한 AI프로덕트 활용법 가이드

Team MAXONOMY 2024.02.28

[더맥소노미2024 세션 스케치VII] 생성 AI 시대에 고객경험 제고를 위한 AI프로덕트 활용법 가이드

더맥소노미2024 세션 스케치 일곱 번째 포스트입니다.

이번 세션 스케치는 배달의민족을 서비스하는 '우아한형제들'이 AI를 어떻게 활용해서 시스템에 녹이고 고객경험을 개선하였는지 자세히 알아보도록 하겠습니다.



The MAXONOMY 2024 는 지난 11월 28일, 롯데호텔월드 크리스탈볼룸에서 개최된, 데이터 마케팅 솔루션 전문가 팀 맥소노미가 주최하는 연례 마테크 컨퍼런스로, 국내외 마테크, 애드테크 솔루션사 및 국내 최정상 기업의 마케팅, 데이터 담당자 분들과 함께 데이터를 활용한 마케팅 성공 사례와 인사이트, 트렌드 등을 공유하는 자리입니다.


금번 컨퍼런스에는 1천여 명의 마케터, 비즈니스 리더, 프로덕트 매니저 분들께서 참석해 주셨으며, 총 21명의 연사분들께서 'Further Steps of Data Marketing'을 주제로 생생한 데이터 활용 전략과 사례, 노하우를 공유해 주셨습니다.







생성 AI 시대에 고객경험 제고를 위한 AI프로덕트 활용법 가이드

우아한형제들 | 이봉호 데이터사이언티스트









AI & CX(Customer Experience)


먼저, 이봉호님은 우아한형제들의 데이터 과학자로서 마케팅 성과분석, KPI 수립, 수요예측, 인과추론 등의 업무를 수행하고 있으십니다. 그리고 최근에는 AI를 비즈니스에 적용하는 방법을 찾는 업무를 수행했다고 합니다. AI와 CX는 서로 뗄래야 뗄 수 없는 관계인데요. CX의 프레임워크에는 고객, 전략, 마케팅, 프로세스 등 여러가지 요소가 있고 그중 시스템은 CX의 핵심 요소이자 AI와도 관련된 부분이기 때문입니다.







Data Centric Approach


AI 트렌드


최근 많은 빅테크 기업이 앞다투어 LLM(대규모 언어 모델)을 출시하고 데이터센터를 건설하는 등 AI 분야에 많은 투자를 하고 있습니다. 왜 많은 테크 기업이 AI에 투자하고 이에 유저들이 환호하고 있는 것일까요? 이봉호님께서는 '활용처를 고민할 필요가 없기 때문'이라고 말합니다. 다른 서비스와 다르게 LLM은 다양한 명령어를 통해 다양한 목적에 활용할 수 있기 때문인데요. 그렇다면 모든 회사는 경쟁력을 위해 생성형 AI를 만들어야할까라는 생각이 들 수도 있지만, 사실 쉽지 않은 일입니다. 우선 초기 훈련 비용만 100만달러, 한화 약 1,300억 원이 들어가며 이후 관리하고 개선하는데 훨씬 더 많은 비용이 발생합니다.


그래서 많은 기업에서 산업별 특화된 AI를 개발하는 전략을 취하고 있습니다. 대형 모델을 개발하는 것보단 비용이 저렴하며, 특정 사용 목적에 훨씬 용의할 수 있기 때문이죠. 여기까지 듣다보면, 나도 앞으로 변화하는 AI시대에 적응하기 위해 AI 개발을 배워야하는 생각이 들 수도 있지만, 전혀 그럴 필요가 없습니다. 그 이유는 포스팅 끝 부분에서 확인할 수 있습니다!






우리는 데이터를 제대로 활용하고 있는가


우리는 BPS, 리텐션, 이탈률 등의 지표를 사용해서 마케팅 성과를 측정하고 있습니다. 이런 지표가 의미없는 것은 아니지만, 최근 연구에 의하면 이 보다 더 강력한 방법이 있습니다. 그것은 바로 데이터를 여러 측면에서 반복해서 관찰하고 측정하는 것입니다. 이 방법을 사용하면 기존에 발견하지 못했던 개선점을 발견할 수 있을뿐만 아니라, 심지어 브랜딩 성과까지도 측정 가능하다고 합니다. 브랜딩은 성격상 그 성과를 측정할 수 없다는 것이 지금까지 마케팅에서의 통용되던 생각이었지만, 해당 브랜드가 온오프라인에 반복해서 관찰 가능한지 측정하여 그 성과를 측정할 수 있다고 합니다.


KDD 2021 스포티파이 세션에서는 스포티파이가 고객 경험을 개선할 수 있었던 방법을 공유되었는데요. 여기서도 마찬가지로 고객이 반복적으로 보여주는 태도를 측정하고 고민하여 KPI를 찾고 그 KPI를 달성하니 고객 경험이 실제로 개선되었다고 설명합니다.






Data Centric Approach


AI 컴포넌트는 크게 3가지로 나눌 수 있는데요. Data(데이터), Model(모델), Operation(오퍼레이션)입니다. 데이터, 모델, 오퍼레이션의 각 관점에서 고객경험을 어떻게 정의하고 어떻게 매칭 시키냐에 따라서 AI프로덕트를 활용한 고객 경험 개선과 변화 정도가 달라지는데요. 사실 지금까지는 이 중 모델에 대한 투자가 활발했던 경향이 있습니다. 빅테크만큼 투자여력이 있다면 모델에 투자하는 것은 합리적일 수 있습니다. 투자한 만큼 성능을 보여주니까요. 하지만 시간이 지나면 개발에 필요한 시간이 기하급수적으로 증가하고 성능 개선에 한계가 발생합니다.


그래서 이봉호님이 제안하는 것은 데이터에 대한 투자입니다. 이를 두고 앤드류 응 고수는 'Data Centric Approach'라고 명명했는데요. 데이터를 중심으로 접근하는 것을 말합니다. 더 자세히는 데이터의 양과 질에 집중해서 문제를 개선하는 것을 말합니다. 많은 기업이 자사에는 많은 데이터가 있다고 자부하는 경향이 있는데요. 하지만 이는 보통 운영 데이터를 두고 말하는 경우가 많습니다. 운영데이터와 학습 데이터는 질적인 측면에서 다르다고 할 수 있습니다. 같은 목적인 데이터끼리 묶어주거나 오답이 있는지 확인해보는 절차 즉, 관점이 포함되는지가 중요합니다. 물론 많은 비용을 들여서 데이터의 질을 무시하고 많은 양의 데이터를 중심으로 AI를 개발할 수도 있습니다. 하지만 그만큼 많은 비용이 들어갈 것이고, 그 비용대비 유의미한 효과를 거두는 것은 상당이 어려운 일입니다.










마라순두부는 한식일까 중식일까


배민 검색창 개선하기


이봉호님은 어느날 배달의민족 검색 기능이 굉장히 약하다는 것을 인지하였다고 합니다. 예를들어 짜장면을 먹고 싶어서 검색창에 '짜장면'이라고 검색을 하였는데 짬짜면, 불타는 쫘장, 달달짭짤면 등과 같이 가게 사장님이 설정한 자유로운 명칭의 짜장면이 검색되지 않았던 것이죠. 이에 이봉호님은 배민에서 판매되는 모든 종류의 메뉴를 카테고라이징해보자고 제안하였습니다. 정말 특이한 음식을 제외한다면 어느 정도 큰 틀 안에서 분류가 가능할 것이고 검색기능 개선, 메뉴별 통계 등 여러가지 유의미한 성과를 달성할 수 있을 것이라고 생각했습니다.


하지만 이 작업을 사람이 수동으로 한다고 계산하면 10명이서 2년 정도 걸리는 일이었다고 합니다. 시간과 비용이 엄청나게 소모되는 일이었는데요. 이에 NLP(Natural Language Processing)를 적용한 머신러닝 기술을 활용하여 카테고리 분류 작업을 하였고, 그 결과 MM(Man Month) 기준으로 93.65% 나 절감할 수 있었다고 합니다.






관점이 중요하다


해당 프로젝트 초기에는 고객에게 나가는 데이터인데 AI가 판단한 결과를 어떻게 믿고 사용하냐는 이야기를 많이 들었다고 합니다. 그래서 프로젝트 초기에는 AI가 판단했을 떄 정답일 확률 99%인 것만 반영하고 나머지는 사람이 검사하는 방식으로 진행하였다고 합니다. 이후 사람의 오류 확률과 AI의 오류 확률을 비교해서 설득력을 얻고 자동화 레벨을 점차 올릴 수 있었고 해당 성과를 만들 수 있었다고 합니다.


물론 AI가 만능은 아닙니다. 돼지김치찌개를 돼지고기랑 김치찌개 중 어떤 것으로 분류할지에 대해 사람은 '둘다 하면되지'라고 쉽게 결론 지을 수 있지만 AI는 그렇지 않습니다. 여러가지 결론을 도출하라는 관점을 주입받지 못했기 때문입니다. 관점이라는 것은 AI를 통해 해결하고자하는 답의 방향을 말합니다. 그 답은 경영에서 MECE의 조건을 갖추면서, 복잡하지 않아서 AI에게 쉽게 전달해줄 수 있어야 합니다. 그런 관점을 명확하게 갖추면 AI 개발에 많은 돈을 투자할 필요가 없다고 합니다.


실제로 검색창 개선을 프로젝트 시간의 70% 가량은 돼지김치찌개가 돼지고기인지 김치찌개인지 싸우는 것으로 보냈다고 합니다. 모델 개발에 투자하는 것보다 이런 근본적인 데이터 관점을 먼저 해결하는 것이 효율적 일 수 있습니다.









결국 인간이다



Chat GPT의 오픈 AI가 캐냐의 노동자에게 2달러 미만의 시급을 주고 RLHF(Reinforcement Learning with Human Feedback)를 활용하고 있다는 기사를 보신 적 있나요? RLHF는 '인간 피드백을 통한 강화 학습'이라는 뜻으로 쉽게 말해 사람이 반복해서 AI 생성물에 피드백을 줌으로써 AI 성능을 개선하는 것을 말하는데요.


윤리적 논란 등을 뒤로 하고 여기서 얻을 수 있는 사실은 오픈AI처럼 앞서나가는 AI기업에도 결국 사람이 필요하다는 것입니다. 데이터를 가지고 어떤 답이 나오기를 바라고 어떤 비즈니스 임펙트를 만들고 싶은지 고민하고 데이터 거버넌스를 수립할 필요가 있습니다. 데이터를 생성하는 것도 소비하는 것도 활용하는 것도 인간이기 때문에 굳이 만능 AI를 사용하지 않고 최소한의 모델을 활용해서 문제를 해결할 수 있습니다. 고객으로부터 발생한 데이터를 통해 고객 경험을 개선하는 것도 마찬가지겠지요.




📺 우아한형제들의 데이터 마케팅 이야기 전체 영상 보러가기







팀 맥소노미와 글로벌 마테크 & 애드테크 솔루션사, 그리고 국내 최정상 기업이 함께했던 The MAXONOMY 2024의 모든 세션은 더맥소노미2024 다시보기에서 확인하실 수 있습니다. 더맥소노미2024를 통해 그동안의 고민이 조금은 가벼워지셨기를 바라며, 더맥소노미는 더욱 유익한 인사이트와 정보로 다시 찾아뵙겠습니다.

logo

팀맥소노미

YOUR DIGITAL MARKETING HERO

비즈니스 성장을 위한 최적의 솔루션과 무료 데모 시연, 활용 시나리오를 제안 받아보세요

관련 글 보기

Amplitude Autocapture: 페이지 진입, 클릭, 앱 종료까지 고객 행동을 자동 수집하는 법

Amplitude Autocapture: 페이지 진입, 클릭, 앱 종료까지 고객 행동을 자동 수집하는 법

개발 리소스 없이 클릭·페이지뷰 등 사용자 행동을 자동 수집해 빠른 분석과 최적화를 지원하는 Amplitude Autocapture 기능 소개

AI에 의존하는 인간, 인간을 필요로 하는 AI

AI에 의존하는 인간, 인간을 필요로 하는 AI

AI가 변화시킨 일자리, 시장 구조, 마케팅의 한계와 기회까지 짚어보는 인사이트

MCP: AI 사용자 경험을 확장시켜줄 핵심 연결고리

MCP: AI 사용자 경험을 확장시켜줄 핵심 연결고리

오늘날 마케팅의 본질은 단순히 제품을 알리는 데 그치지 않습니다. 소비자의 기대치는 그 어느 때보다 높아졌고, 기업은 “고객을 위한 경험”을 제공해야 한다는 압박을 받고 있습니다. 이런 변화 속에서 AI는 중요한 조력자로 부상했지만, 아직까지는 많은 한계가 있는 것이 사실입니다. 가장 큰 이유는 아직까지 AI기술이 일부 플랫폼 속에서 폐쇄적인 형태로 존재하기 때문입니다. 뛰어난 AI 기술을 여기저기서 활용하고 싶지만 그렇지 못한다는 것이죠.이 한계를 뛰어넘게 만들기 위해 AI업계에서는 MCP라는 기술을 적용시키고 있습니다. CDP도 아니고 MCP란 것은 또 무엇일까요? 왜 등장했을까요? 🤔 이번 맥사이트픽 포스팅에서는 MCP가 무엇이며, 마케터에게 MCP를 왜 주목해야 하는지 알아보도록 하겠습니다.MCP란?MCP는 Model Context Protocol의 약자로 AI가 외부의 다양한 도구와 데이터 소스에 표준화된 방식으로 연결되도록 설계된 프로토콜 기술인데요. 쉽게 말해, 모델이 단순히 텍스트만 처리하는 게 아니라 “컨텍스트”를 확장해서 다양한 애플리케이션·데이터 소스·플러그인과 소통할 수 있게 해주는 통신 규칙입니다. 이는 단순한 기술 혁신을 넘어 마케터가 소비자 경험을 설계하는 방식 자체를 변화시키는 AI 경험 확장의 첫 단계가 될 수 있습니다.흔히들 MCP를 다음과 같이 비유하고 있습니다. MCP는 AI와 외부 세계를 연결하는 ‘공용 어댑터 와 같다. 지금까지는 각 AI와 도구를 연결하기 위해 개별 API 연동을 해야 했습니다. 마케터 입장에서 이는 시간이 많이 들고, 통합 범위에도 한계가 있었습니다. 그러나 MCP는 이 과정을 표준화해 AI가 여러 도구에 동일한 형식으로 접근할 수 있도록 합니다. 그렇다면 이런 시도로 인해 사용자들의 AI 경험에 어떤 변화가 생기게 되는 것일까요. 크게 다음 3가지의 큰 변화를 경험할 수 있습니다. (1) 즉시성소비자는 기다림을 싫어합니다. MCP를 활용하면 AI는 고객 요청에 즉시 대응하며 대화 흐름을 끊지 않습니다. 예를 들어, 라이브 커머스 방송 중 소비자가 “이 제품 해외배송 가능한가요?”라고 물으면 AI는 판매 시스템에서 바로 정보를 가져와 답변합니다.(2) 연속성마케팅은 단발 이벤트로 끝나지 않습니다. MCP를 활용하면 AI가 고객과의 과거 대화를 기억하고, 다음 접점에서 이어서 대화를 진행합니다. 예를 들어, 지난주에 상품 상담을 했던 고객이 다시 채팅을 시작하면 AI가 “지난번 문의하신 블루 재킷, 오늘 재입고 되었습니다.”라고 답할 수 있게됩니다.(3) 몰입감소비자 경험이 끊김 없이 이어지고, 그 안에서 개인화된 정보가 활용되면 고객은 기업과의 상호작용에 더 깊이 몰입할 수 있게됩니다. MCP는 이러한 몰입형 브랜드 경험을 가능하게 하는 핵심 인프라입니다.MCP와 마케팅 혁신마케팅 측면에서 MCP는 다음 3가지 혁신을 기대할 수 있습니다.(1) 실시간 고객 응대의 혁신앞서 들었던 예시와 같이 MCP를 활용하면 고객이 “이 제품 지금 재고 있나요?”라고 묻는 순간, AI는 재고 관리 시스템에서 데이터를 바로 가져와 답변합니다. 더 이상 ‘추측성 응답’이 아닌 검증된 최신 데이터를 기반으로 한 응대가 가능합니다.(2) 개인화의 정교화마케팅의 핵심은 나만을 위한 메시지를 전달하는 것입니다. MCP는 AI가 고객의 과거 구매 이력, 웹사이트 행동 데이터, 실시간 위치 정보까지 통합해 맥락에 맞는 제안을 할 수 있도록 합니다. 예를 들어, 고객이 특정 제품 페이지를 열람한 직후 AI가 “현재 이 제품에 대해 10% 할인 중이며, 오늘 주문 시 내일 배송 가능합니다.”라는 메시지를 전송합니다.(3) 캠페인 운영 자동화마케터는 MCP를 통해 광고 집행 툴, 이메일 마케팅 플랫폼, SNS 채널을 하나의 AI 대화 환경에 통합할 수 있습니다. 캠페인 데이터를 분석해 성과가 낮은 타겟군을 즉시 조정하거나, 성과가 좋은 광고 문안을 다른 채널로 확장하는 자동화도 가능합니다.AI, 도구에서 에이전트로2025년의 마케팅 환경은 과거와 비교할 수 없을 정도로 복잡하고 역동성이 더해지고 있습니다.  AI 기술은 단순한 콘텐츠 생성 도구를 넘어, 고객 접점 전체를 통합 관리하는 에이전트 기반 생태계로 발전하고 있습니다.특히 MCP는 AI와 외부 데이터, 도구, 시스템을 하나의 언어로 연결하는 환경을 만드는 핵심 역할을 수행할 것입니다. 결과적으로는 AI 에이전트의 활성화를 이끌어낼 것이라 예상할 수 있습니다.MCP의 확산은 마케팅 생태계에 큰 변화를 가져올 것입니다. 앞으로의 AI 마케팅은 표준화 기반 생태계 → 도구·데이터 실시간 연동 → 자동화된 맞춤 경험 제공이라는 흐름으로 가속화될 것입니다. 마케터는 MCP 덕분에 기술 통합에 쓰던 시간을 절약하고, 전략과 창의성에 집중할 수 있습니다.MCP적용 시 주의점전적으로 AI로 인해 모든것이 자동화될 수록 주의사항은 더욱 명확합니다. 맥사이트픽으로 여러번 언급해드렸던 프라이버시와 보안 문제입니다. MCP로 연결되는 데이터는 실시간성이란 강한 무기를 가집니다. 그리고 그만큼 보안 위협을 수반합니다. AI가 민감한 데이터에 접근하는 만큼, 권한 제어와 감사 로그 관리가 필수이며 때로는 데이터 접근 권한을 최소화하고, 필요한 경우 고객 동의를 명확히 받아야 할 것입니다.또한 사용자 경험 관리 측면으로도 주의가 필요합니다. AI가 모든 요청을 자동 처리하더라도, 고객이 과도한 정보 제공을 요구받는다면 거부감을 느낄 수 있습니다. UX 설계 단계에서 고객 편의성을 최우선으로 고려해야 합니다. AI가 설계한 고객의 UX에 대해 고객이 100%만족할 것이라 기대에 의존하지 않는것이 좋습니다. AI 또한 잘못된 데이터를 기반으로 고객을 잘못 이해하거나 오해하는 경우가 생길 수도 있습니다. MCP의 구조와 설정 방식이 아직은 생소합니다. 이를 해결하기 위해 MCP 경험이 있는 파트너사와 협력하거나, 마케터, 개발자, 경영진이 모여 MCP의 가치와 역할에 대한 공감대 형성과 이해도를 맞추는 것이 첫번째 순서일 수 있습니다.마치며AX(AI 대전환)을 준비하는 기업과 브랜드에게 MCP는 실무에서 마케터가 직면하는 데이터 단절, 시스템 불일치, 운영 비효율 문제를 근본적으로 해결하고 여기에 고객 경험 강화, 영업 프로세스 최적화, 캠페인 자동화 등 다양한 영역에서 효과를 발휘기 위한 최고의 방안이 될 수 있습니다.마케터가 MCP를 성공적으로 활용하려면 우선순위 시스템 선정, 데이터 품질 관리, 보안 설계를 철저히 하기를 권해드립니다. 현시점부터 단계적으로 MCP를 도입하고 경험을 축적하는 기업이 향후 AI 마케팅을 리드하는 브랜드가 될 것임을 강조드리며, 이번 포스팅을 마치겠습니다.

그로스 마케팅이란? 뜻, 성공 사례, 필수 전략 총정리

그로스 마케팅이란? 뜻, 성공 사례, 필수 전략 총정리

그로스 마케팅의 정의부터 성공 사례와 필수 전략까지, 데이터 기반 성장 비법 총정리

더맥소노미2024 세션 스케치 일곱 번째 포스트입니다. 

이번 세션 스케치는 배달의민족을 서비스하는 '우아한형제들'이 AI를 어떻게 활용해서 시스템에 녹이고 고객경험을 개선하였는지 자세히 알아보도록 하겠습니다. 


 


 

The MAXONOMY 2024 는 지난 11월 28일, 롯데호텔월드 크리스탈볼룸에서 개최된, 데이터 마케팅 솔루션 전문가 팀 맥소노미가 주최하는 연례 마테크 컨퍼런스로, 국내외 마테크, 애드테크 솔루션사 및 국내 최정상 기업의 마케팅, 데이터 담당자 분들과 함께 데이터를 활용한 마케팅 성공 사례와 인사이트, 트렌드 등을 공유하는 자리입니다.


금번 컨퍼런스에는 1천여 명의 마케터, 비즈니스 리더, 프로덕트 매니저 분들께서 참석해 주셨으며, 총 21명의 연사분들께서 'Further Steps of Data Marketing'을 주제로 생생한 데이터 활용 전략과 사례, 노하우를 공유해 주셨습니다.




 

 

 

 

 




생성 AI 시대에 고객경험 제고를 위한 AI프로덕트 활용법 가이드

우아한형제들 | 이봉호 데이터사이언티스트


 

 








AI & CX(Customer Experience)


먼저, 이봉호님은 우아한형제들의 데이터 과학자로서 마케팅 성과분석, KPI 수립, 수요예측, 인과추론 등의 업무를 수행하고 있으십니다. 그리고 최근에는 AI를 비즈니스에 적용하는 방법을 찾는 업무를 수행했다고 합니다. AI와 CX는 서로 뗄래야 뗄 수 없는 관계인데요. CX의 프레임워크에는 고객, 전략, 마케팅, 프로세스 등 여러가지 요소가 있고 그중 시스템은 CX의 핵심 요소이자 AI와도 관련된 부분이기 때문입니다.

 

 







Data Centric Approach


AI 트렌드


최근 많은 빅테크 기업이 앞다투어 LLM(대규모 언어 모델)을 출시하고 데이터센터를 건설하는 등 AI 분야에 많은 투자를 하고 있습니다. 왜 많은 테크 기업이 AI에 투자하고 이에 유저들이 환호하고 있는 것일까요? 이봉호님께서는 '활용처를 고민할 필요가 없기 때문'이라고 말합니다. 다른 서비스와 다르게 LLM은 다양한 명령어를 통해 다양한 목적에 활용할 수 있기 때문인데요. 그렇다면 모든 회사는 경쟁력을 위해 생성형 AI를 만들어야할까라는 생각이 들 수도 있지만, 사실 쉽지 않은 일입니다. 우선 초기 훈련 비용만 100만달러, 한화 약 1,300억 원이 들어가며 이후 관리하고 개선하는데 훨씬 더 많은 비용이 발생합니다.


그래서 많은 기업에서 산업별 특화된 AI를 개발하는 전략을 취하고 있습니다. 대형 모델을 개발하는 것보단 비용이 저렴하며, 특정 사용 목적에 훨씬 용의할 수 있기 때문이죠. 여기까지 듣다보면, 나도 앞으로 변화하는 AI시대에 적응하기 위해 AI 개발을 배워야하는 생각이 들 수도 있지만, 전혀 그럴 필요가 없습니다. 그 이유는 포스팅 끝 부분에서 확인할 수 있습니다!



 




우리는 데이터를 제대로 활용하고 있는가


우리는 BPS, 리텐션, 이탈률 등의 지표를 사용해서 마케팅 성과를 측정하고 있습니다. 이런 지표가 의미없는 것은 아니지만, 최근 연구에 의하면 이 보다 더 강력한 방법이 있습니다. 그것은 바로 데이터를 여러 측면에서 반복해서 관찰하고 측정하는 것입니다. 이 방법을 사용하면 기존에 발견하지 못했던 개선점을 발견할 수 있을뿐만 아니라, 심지어 브랜딩 성과까지도 측정 가능하다고 합니다. 브랜딩은 성격상 그 성과를 측정할 수 없다는 것이 지금까지 마케팅에서의 통용되던 생각이었지만, 해당 브랜드가 온오프라인에 반복해서 관찰 가능한지 측정하여 그 성과를 측정할 수 있다고 합니다.


KDD 2021 스포티파이 세션에서는 스포티파이가 고객 경험을 개선할 수 있었던 방법을 공유되었는데요. 여기서도 마찬가지로 고객이 반복적으로 보여주는 태도를 측정하고 고민하여 KPI를 찾고 그 KPI를 달성하니 고객 경험이 실제로 개선되었다고 설명합니다.



 




Data Centric Approach


AI 컴포넌트는 크게 3가지로 나눌 수 있는데요. Data(데이터), Model(모델), Operation(오퍼레이션)입니다. 데이터, 모델, 오퍼레이션의 각 관점에서 고객경험을 어떻게 정의하고 어떻게 매칭 시키냐에 따라서 AI프로덕트를 활용한 고객 경험 개선과 변화 정도가 달라지는데요. 사실 지금까지는 이 중 모델에 대한 투자가 활발했던 경향이 있습니다. 빅테크만큼 투자여력이 있다면 모델에 투자하는 것은 합리적일 수 있습니다. 투자한 만큼 성능을 보여주니까요. 하지만 시간이 지나면 개발에 필요한 시간이 기하급수적으로 증가하고 성능 개선에 한계가 발생합니다.


그래서 이봉호님이 제안하는 것은 데이터에 대한 투자입니다. 이를 두고 앤드류 응 고수는 'Data Centric Approach'라고 명명했는데요. 데이터를 중심으로 접근하는 것을 말합니다. 더 자세히는 데이터의 양과 질에 집중해서 문제를 개선하는 것을 말합니다. 많은 기업이 자사에는 많은 데이터가 있다고 자부하는 경향이 있는데요. 하지만 이는 보통 운영 데이터를 두고 말하는 경우가 많습니다. 운영데이터와 학습 데이터는 질적인 측면에서 다르다고 할 수 있습니다. 같은 목적인 데이터끼리 묶어주거나 오답이 있는지 확인해보는 절차 즉, 관점이 포함되는지가 중요합니다. 물론 많은 비용을 들여서 데이터의 질을 무시하고 많은 양의 데이터를 중심으로 AI를 개발할 수도 있습니다. 하지만 그만큼 많은 비용이 들어갈 것이고, 그 비용대비 유의미한 효과를 거두는 것은 상당이 어려운 일입니다.










 

마라순두부는 한식일까 중식일까


배민 검색창 개선하기


이봉호님은 어느날 배달의민족 검색 기능이 굉장히 약하다는 것을 인지하였다고 합니다. 예를들어 짜장면을 먹고 싶어서 검색창에 '짜장면'이라고 검색을 하였는데 짬짜면, 불타는 쫘장, 달달짭짤면 등과 같이 가게 사장님이 설정한 자유로운 명칭의 짜장면이 검색되지 않았던 것이죠. 이에 이봉호님은 배민에서 판매되는 모든 종류의 메뉴를 카테고라이징해보자고 제안하였습니다. 정말 특이한 음식을 제외한다면 어느 정도 큰 틀 안에서 분류가 가능할 것이고 검색기능 개선, 메뉴별 통계 등 여러가지 유의미한 성과를 달성할 수 있을 것이라고 생각했습니다.


하지만 이 작업을 사람이 수동으로 한다고 계산하면 10명이서 2년 정도 걸리는 일이었다고 합니다. 시간과 비용이 엄청나게 소모되는 일이었는데요. 이에 NLP(Natural Language Processing)를 적용한 머신러닝 기술을 활용하여 카테고리 분류 작업을 하였고, 그 결과 MM(Man Month) 기준으로 93.65% 나 절감할 수 있었다고 합니다.



 




관점이 중요하다


해당 프로젝트 초기에는 고객에게 나가는 데이터인데 AI가 판단한 결과를 어떻게 믿고 사용하냐는 이야기를 많이 들었다고 합니다. 그래서 프로젝트 초기에는 AI가 판단했을 떄 정답일 확률 99%인 것만 반영하고 나머지는 사람이 검사하는 방식으로 진행하였다고 합니다. 이후 사람의 오류 확률과 AI의 오류 확률을 비교해서 설득력을 얻고 자동화 레벨을 점차 올릴 수 있었고 해당 성과를 만들 수 있었다고 합니다.


물론 AI가 만능은 아닙니다. 돼지김치찌개를 돼지고기랑 김치찌개 중 어떤 것으로 분류할지에 대해 사람은 '둘다 하면되지'라고 쉽게 결론 지을 수 있지만 AI는 그렇지 않습니다. 여러가지 결론을 도출하라는 관점을 주입받지 못했기 때문입니다. 관점이라는 것은 AI를 통해 해결하고자하는 답의 방향을 말합니다. 그 답은 경영에서 MECE의 조건을 갖추면서, 복잡하지 않아서 AI에게 쉽게 전달해줄 수 있어야 합니다. 그런 관점을 명확하게 갖추면 AI 개발에 많은 돈을 투자할 필요가 없다고 합니다.


실제로 검색창 개선을 프로젝트 시간의 70% 가량은 돼지김치찌개가 돼지고기인지 김치찌개인지 싸우는 것으로 보냈다고 합니다. 모델 개발에 투자하는 것보다 이런 근본적인 데이터 관점을 먼저 해결하는 것이 효율적 일 수 있습니다. 

 






 




결국 인간이다



Chat GPT의 오픈 AI가 캐냐의 노동자에게 2달러 미만의 시급을 주고 RLHF(Reinforcement Learning with Human Feedback)를 활용하고 있다는 기사를 보신 적 있나요? RLHF는 '인간 피드백을 통한 강화 학습'이라는 뜻으로 쉽게 말해 사람이 반복해서 AI 생성물에 피드백을 줌으로써 AI 성능을 개선하는 것을 말하는데요.


윤리적 논란 등을 뒤로 하고 여기서 얻을 수 있는 사실은 오픈AI처럼 앞서나가는 AI기업에도 결국 사람이 필요하다는 것입니다. 데이터를 가지고 어떤 답이 나오기를 바라고 어떤 비즈니스 임펙트를 만들고 싶은지 고민하고 데이터 거버넌스를 수립할 필요가 있습니다. 데이터를 생성하는 것도 소비하는 것도 활용하는 것도 인간이기 때문에 굳이 만능 AI를 사용하지 않고 최소한의 모델을 활용해서 문제를 해결할 수 있습니다. 고객으로부터 발생한 데이터를 통해 고객 경험을 개선하는 것도 마찬가지겠지요.

 




 

📺 우아한형제들의 데이터 마케팅 이야기 전체 영상 보러가기







팀 맥소노미와 글로벌 마테크 & 애드테크 솔루션사, 그리고 국내 최정상 기업이 함께했던 The MAXONOMY 2024의 모든 세션은 더맥소노미2024 다시보기에서 확인하실 수 있습니다. 더맥소노미2024를 통해 그동안의 고민이 조금은 가벼워지셨기를 바라며, 더맥소노미는 더욱 유익한 인사이트와 정보로 다시 찾아뵙겠습니다.

 

 

 

인공지능(AI), 데이터 분석, 예측, 우아한형제들