앰플리튜드
GA4 vs Amplitude 비교하기
Team MAXONOMY ・ 2025.05.29

데이터 분석 시대, GA4만으로 충분할까?
이제 거의 모든 비즈니스에서 디지털 역량은 필수 요소로 자리잡았습니다. 전통적인 제조업부터, 리테일, 물류, 심지어 외식업까지 디지털 서비스가 배제되는 산업이 없는데요. 이제 소비자는 앱이나 웹을 통해 식당을 예약하고, 내 물건이 어디까지 배송되었는지 확인하고, 마트에 방문하기 전에 원하는 물건이 있는지 확인합니다.
이런 환경 속, 고객 경험 이해는 기업 경쟁력의 핵심이 되었습니다. 고객이 우리 서비스 안에서 무엇을 하고 어떤 점을 좋아하고 어떤 점에 불만을 느끼는지 명확히 알 수 있다면, 최적화 전략을 쉽게 도출할 수 있기 때문입니다.
고객 경험 이해를 위한 대표적인 도구로 GA4(Google Analytics 4)와 Amplitude가 있는데요. 그중 GA4는 현재 가장 많은 시장 점유율을 가진 분석 솔루션입니다. 아무래도 무료로 제공되던 구글의 UA(Universal Analytics)로 분석을 시작하는 기업이 많았고, UA 지원이 종료되며, 자연스럽게 GA4를 사용하게 된 것이 아닐까 추측됩니다.
하지만 GA4에는 여러 아쉬운 점들을 찾아볼 수 있습니다. 예를 들어, 개인화된 데이터 추적이나 고객 라이프사이클 추적 영역에서는 기능이 다소 제한적입니다. 다른 3rd party 데이터와의 통합과 유연성 측면들에도 아쉬움이 많습니다.
제품 분석 솔루션 역사 이해하기
GA4가 왜 이런 영역에서 유독 약한 모습을 보이는지 이해하기 위해서는 분석 솔루션의 역사를 살펴볼 필요가 있습니다.
사실 GA4의 근간이 되었던, UA는 디지털 광고, UTM과 같이 신규고객 유입(User Acquisition) 중심의 퍼포먼스 마케팅 솔루션입니다. 때문에 세션 기반의 로그 데이터를 수집하는 형태로 작동하였죠. 당시 마케팅은 유저를 최대한 많이 유입시키는 것에 초점이 맞추어져있었고, UA는 이에 최적화된 솔루션으로 인기가 많았습니다.
하지만 Amplitude가 시장에 출시되고, 기존의 세션 기반이 아닌, 이벤트 기반의 데이터 분석 방식을 처음 제안하였습니다. 이벤트 기반의 데이터 분석은 특히 모바일 앱 환경에서 사용자의 면밀한 행동 분석을 가능하게 하였고, 모바일 시장의 성장과 함께 Amplitude도 폭발적으로 성장할 수 있었습니다. 이때부터 마케팅의 영역이 유저 유입을 넘어, 유저 활성화, 리텐션, 수익화 등 훨씬 넓은 영역으로 확장되었습니다.
이런 변화에 맞추어 구글은 기존 UA를 종료하고, 이벤트 기반의 GA4를 새롭게 출시하였습니다. Amplitude에 비하면, 여전히 퍼포먼스 분석 위주의 기능을 제공하며, 유저 라이프 사이클을 추적하는 데 있어서 다소 아쉬운 모습을 보이고 있습니다.
Amplitude는 단순 분석 도구가 아니다
Amplitude는 단순히 데이터를 수집하고 시각화하는 도구가 아닙니다. 고객의 획득 > 참여 > 전환 > 유지 > 성장에 이르는 고객 여정 전체를 설계하고, 이 여정에서 획득한 데이터를 제품 기획자, 마케터, 개발자 등 누구라도 쉽게 다룰 수 있는 통합 디지털 경험 플랫폼입니다.
- 실시간 개인화 및 실시간 데이터 분석
- 대시보드를 통해 A/B 테스트와 같은 실험을 설정하고, 그 데이터들을 곧바로 분석
- 80개 이상의 마케팅 플랫폼들과 네이티브 연동을 지원하며, 채널별 획득 데이터들의 리텐션 효과 분석 가능
- 고객 전체 여정의 분석에 최적화되어, 첫 방문부터 재구매까지 사용자 ID 기반으로 고객의 라이프사이클 분석 가능
현재 Amplitude의 대표적 고객인 버거킹은 과거에는 GA4를 이용했지만, Amplitude로 전환하고 통합된 데이터를 기반으로 실험과 지속적인 개인화를 실행하며 전환율과 재구매율을 끌어올리고 있습니다.
" 우리는 버거 회사입니다. 버거가 바로 우리의 제품입니다. 웹사이트가 아닙니다. 하지만 경쟁력을 유지하려면 단순히 와퍼를 판매하는 것 이상의 노력을 기울여야 합니다. 오늘날 우리는 그 어느 때보다 사람들이 버거킹 브랜드를 통해 어떤 경험을 할지, 그리고 그 경험이 의미 있고 감정적인 유대감을 형성할 수 있을지 고민하고 있습니다. " - 엘리 자비스, Restaurant Brands International(버거킹) 기술 제품 관리 부사장
이미지 출처: Amplitude | 개인화된 할인을 제공하는 버거킹
버거킹의 고객 여정 개선은 크게 다음의 프로세스들로 이루어졌습니다.
- 오퍼(주문) CTA 클릭을 유도하는 A/B 테스트
- 장바구니 금액 기준, 고객별 개인화된 할인 제공
- Amplitude 코호트 기능을 통해 이탈 및 특정 행동 고객에게 푸시 알림 발송
마치며
글로벌 대표 컨설팅펌 브레인 앤 컴퍼니(Bain & Company)의 연구 결과에 따르면, 80% 이상의 기업이 고객들에게 훌륭한 경험을 제공한다고 스스로 평가했지만, 실제 훌륭한 경험을 제공받았다 생각하는 고객은 단 8%에 불과했습니다.
고객 유입 마케팅의 한계를 엿볼 수 있는 부분이자, 고객 경험 관리의 중요성을 대변해주는 자료입니다. 여전히 많은 마케터분들이 캠페인 성과 측정과 유입 분석을 위해 GA4를 이용 중일 것입니다. 하지만 유입 데이터만으로는, 구체적인 액션으로 연결하지 못하고, 고객을 제대로 이해하지 못합니다.
바로 지금이 진정한 고객 경험을 이해하기 위한 최적의 시기입니다. Amplitude에 대해 궁금하신 게 있다면, Team MAXONOMY에 문의하세요. 성실히 안내 도와드리겠습니다. 문의하기
콘텐츠 더 읽어보기

팀맥소노미
YOUR DIGITAL MARKETING HERO
비즈니스 성장을 위한 최적의 솔루션과 무료 데모 시연, 활용 시나리오를 제안 받아보세요
24시간 프리미엄 열람권 받기
관련 글 보기

Amplitude Autocapture: 페이지 진입, 클릭, 앱 종료까지 고객 행동을 자동 수집하는 법
개발 리소스 없이 클릭·페이지뷰 등 사용자 행동을 자동 수집해 빠른 분석과 최적화를 지원하는 Amplitude Autocapture 기능 소개

AI에 의존하는 인간, 인간을 필요로 하는 AI
AI가 변화시킨 일자리, 시장 구조, 마케팅의 한계와 기회까지 짚어보는 인사이트

MCP: AI 사용자 경험을 확장시켜줄 핵심 연결고리
오늘날 마케팅의 본질은 단순히 제품을 알리는 데 그치지 않습니다. 소비자의 기대치는 그 어느 때보다 높아졌고, 기업은 “고객을 위한 경험”을 제공해야 한다는 압박을 받고 있습니다. 이런 변화 속에서 AI는 중요한 조력자로 부상했지만, 아직까지는 많은 한계가 있는 것이 사실입니다. 가장 큰 이유는 아직까지 AI기술이 일부 플랫폼 속에서 폐쇄적인 형태로 존재하기 때문입니다. 뛰어난 AI 기술을 여기저기서 활용하고 싶지만 그렇지 못한다는 것이죠.이 한계를 뛰어넘게 만들기 위해 AI업계에서는 MCP라는 기술을 적용시키고 있습니다. CDP도 아니고 MCP란 것은 또 무엇일까요? 왜 등장했을까요? 🤔 이번 맥사이트픽 포스팅에서는 MCP가 무엇이며, 마케터에게 MCP를 왜 주목해야 하는지 알아보도록 하겠습니다.MCP란?MCP는 Model Context Protocol의 약자로 AI가 외부의 다양한 도구와 데이터 소스에 표준화된 방식으로 연결되도록 설계된 프로토콜 기술인데요. 쉽게 말해, 모델이 단순히 텍스트만 처리하는 게 아니라 “컨텍스트”를 확장해서 다양한 애플리케이션·데이터 소스·플러그인과 소통할 수 있게 해주는 통신 규칙입니다. 이는 단순한 기술 혁신을 넘어 마케터가 소비자 경험을 설계하는 방식 자체를 변화시키는 AI 경험 확장의 첫 단계가 될 수 있습니다.흔히들 MCP를 다음과 같이 비유하고 있습니다. MCP는 AI와 외부 세계를 연결하는 ‘공용 어댑터 와 같다. 지금까지는 각 AI와 도구를 연결하기 위해 개별 API 연동을 해야 했습니다. 마케터 입장에서 이는 시간이 많이 들고, 통합 범위에도 한계가 있었습니다. 그러나 MCP는 이 과정을 표준화해 AI가 여러 도구에 동일한 형식으로 접근할 수 있도록 합니다. 그렇다면 이런 시도로 인해 사용자들의 AI 경험에 어떤 변화가 생기게 되는 것일까요. 크게 다음 3가지의 큰 변화를 경험할 수 있습니다. (1) 즉시성소비자는 기다림을 싫어합니다. MCP를 활용하면 AI는 고객 요청에 즉시 대응하며 대화 흐름을 끊지 않습니다. 예를 들어, 라이브 커머스 방송 중 소비자가 “이 제품 해외배송 가능한가요?”라고 물으면 AI는 판매 시스템에서 바로 정보를 가져와 답변합니다.(2) 연속성마케팅은 단발 이벤트로 끝나지 않습니다. MCP를 활용하면 AI가 고객과의 과거 대화를 기억하고, 다음 접점에서 이어서 대화를 진행합니다. 예를 들어, 지난주에 상품 상담을 했던 고객이 다시 채팅을 시작하면 AI가 “지난번 문의하신 블루 재킷, 오늘 재입고 되었습니다.”라고 답할 수 있게됩니다.(3) 몰입감소비자 경험이 끊김 없이 이어지고, 그 안에서 개인화된 정보가 활용되면 고객은 기업과의 상호작용에 더 깊이 몰입할 수 있게됩니다. MCP는 이러한 몰입형 브랜드 경험을 가능하게 하는 핵심 인프라입니다.MCP와 마케팅 혁신마케팅 측면에서 MCP는 다음 3가지 혁신을 기대할 수 있습니다.(1) 실시간 고객 응대의 혁신앞서 들었던 예시와 같이 MCP를 활용하면 고객이 “이 제품 지금 재고 있나요?”라고 묻는 순간, AI는 재고 관리 시스템에서 데이터를 바로 가져와 답변합니다. 더 이상 ‘추측성 응답’이 아닌 검증된 최신 데이터를 기반으로 한 응대가 가능합니다.(2) 개인화의 정교화마케팅의 핵심은 나만을 위한 메시지를 전달하는 것입니다. MCP는 AI가 고객의 과거 구매 이력, 웹사이트 행동 데이터, 실시간 위치 정보까지 통합해 맥락에 맞는 제안을 할 수 있도록 합니다. 예를 들어, 고객이 특정 제품 페이지를 열람한 직후 AI가 “현재 이 제품에 대해 10% 할인 중이며, 오늘 주문 시 내일 배송 가능합니다.”라는 메시지를 전송합니다.(3) 캠페인 운영 자동화마케터는 MCP를 통해 광고 집행 툴, 이메일 마케팅 플랫폼, SNS 채널을 하나의 AI 대화 환경에 통합할 수 있습니다. 캠페인 데이터를 분석해 성과가 낮은 타겟군을 즉시 조정하거나, 성과가 좋은 광고 문안을 다른 채널로 확장하는 자동화도 가능합니다.AI, 도구에서 에이전트로2025년의 마케팅 환경은 과거와 비교할 수 없을 정도로 복잡하고 역동성이 더해지고 있습니다. AI 기술은 단순한 콘텐츠 생성 도구를 넘어, 고객 접점 전체를 통합 관리하는 에이전트 기반 생태계로 발전하고 있습니다.특히 MCP는 AI와 외부 데이터, 도구, 시스템을 하나의 언어로 연결하는 환경을 만드는 핵심 역할을 수행할 것입니다. 결과적으로는 AI 에이전트의 활성화를 이끌어낼 것이라 예상할 수 있습니다.MCP의 확산은 마케팅 생태계에 큰 변화를 가져올 것입니다. 앞으로의 AI 마케팅은 표준화 기반 생태계 → 도구·데이터 실시간 연동 → 자동화된 맞춤 경험 제공이라는 흐름으로 가속화될 것입니다. 마케터는 MCP 덕분에 기술 통합에 쓰던 시간을 절약하고, 전략과 창의성에 집중할 수 있습니다.MCP적용 시 주의점전적으로 AI로 인해 모든것이 자동화될 수록 주의사항은 더욱 명확합니다. 맥사이트픽으로 여러번 언급해드렸던 프라이버시와 보안 문제입니다. MCP로 연결되는 데이터는 실시간성이란 강한 무기를 가집니다. 그리고 그만큼 보안 위협을 수반합니다. AI가 민감한 데이터에 접근하는 만큼, 권한 제어와 감사 로그 관리가 필수이며 때로는 데이터 접근 권한을 최소화하고, 필요한 경우 고객 동의를 명확히 받아야 할 것입니다.또한 사용자 경험 관리 측면으로도 주의가 필요합니다. AI가 모든 요청을 자동 처리하더라도, 고객이 과도한 정보 제공을 요구받는다면 거부감을 느낄 수 있습니다. UX 설계 단계에서 고객 편의성을 최우선으로 고려해야 합니다. AI가 설계한 고객의 UX에 대해 고객이 100%만족할 것이라 기대에 의존하지 않는것이 좋습니다. AI 또한 잘못된 데이터를 기반으로 고객을 잘못 이해하거나 오해하는 경우가 생길 수도 있습니다. MCP의 구조와 설정 방식이 아직은 생소합니다. 이를 해결하기 위해 MCP 경험이 있는 파트너사와 협력하거나, 마케터, 개발자, 경영진이 모여 MCP의 가치와 역할에 대한 공감대 형성과 이해도를 맞추는 것이 첫번째 순서일 수 있습니다.마치며AX(AI 대전환)을 준비하는 기업과 브랜드에게 MCP는 실무에서 마케터가 직면하는 데이터 단절, 시스템 불일치, 운영 비효율 문제를 근본적으로 해결하고 여기에 고객 경험 강화, 영업 프로세스 최적화, 캠페인 자동화 등 다양한 영역에서 효과를 발휘기 위한 최고의 방안이 될 수 있습니다.마케터가 MCP를 성공적으로 활용하려면 우선순위 시스템 선정, 데이터 품질 관리, 보안 설계를 철저히 하기를 권해드립니다. 현시점부터 단계적으로 MCP를 도입하고 경험을 축적하는 기업이 향후 AI 마케팅을 리드하는 브랜드가 될 것임을 강조드리며, 이번 포스팅을 마치겠습니다.

그로스 마케팅이란? 뜻, 성공 사례, 필수 전략 총정리
그로스 마케팅의 정의부터 성공 사례와 필수 전략까지, 데이터 기반 성장 비법 총정리