앰플리튜드
Amplitude Autocapture: 페이지 진입, 클릭, 앱 종료까지 고객 행동을 자동 수집하는 법
Team MAXONOMY ・ 2025.08.28

🤔데이터 분석, 왜 이렇게 어려울까요?
"새로운 기능을 출시했는데 사용자들이 어떻게 반응하는지 궁금해요."
"이 버튼 클릭률이 궁금한데 이벤트 추가하려면 개발팀 일정을 기다려야 한대요."
제품 분석을 처음 시작하는 팀이 흔히 마주하는 상황입니다. 데이터의 분석이 중요하다는 것을 알고 있고, 데이터 분석을 늘 생각하고 있지만, 정작 필요한 순간에 데이터가 없어서 답답한 경험을 해보셨을 것입니다. 대부분의 경우 데이터 수집 코드를 미리 넣어두지 않아 생기는 문제입니다. 버튼 클릭률을 보고 싶은데 이벤트 수집 코드를 심지 않은 것이죠. 개발 부담으로 핵심 이벤트만 선별적으로 수집하고 있다거나, 런칭 후에야 분석이 필요하다는 걸 깨닫는 경우가 많죠.
(참고: 고객 행동 데이터 트래킹 가이드북)
Autocapture(오토캡쳐)는 이러한 문제를 근본적으로 해결하는 기능입니다. 마치 숨은 개발자가 24시간 사용자 행동을 관찰하고 기록하는 것처럼, 사용자가 웹/앱에서 하는 주요 상호작용을 개발자의 네이티브 코드 작성이나 GTM 작업 없이 자동으로 수집하여 놓치기 쉬운 데이터를 바로 확보해 줍니다. 덕분에 개발단 추가 태깅 작업 없이, 배포 즉시 분석을 시작할 수 있죠.
⚖️어떤 상황에서 유용할까요?
시나리오 1: 긴급한 랜딩 페이지 최적화
이커머스 마케터가 블랙프라이데이 특별 랜딩 페이지를 급하게 제작하여 배포 했습니다. 문제가 있지는 않을지, 전환율을 높이기 위한 더 좋은 대안이 있을지 검토하기 위해 "지금 구매하기" 버튼의 클릭률을 측정하고 싶었지만, 개발팀은 다른 프로젝트로 바쁜 상황이었죠.
마케터는 바로 Autocapture를 활성화한 후, 실시간으로 버튼 클릭 데이터를 확인할 수 있었습니다. 분석 결과 클릭률이 예상보다 낮았고, Experiment A/B 테스트를 통해 버튼의 색상과 길이를 변경하고 "한정 특가 놓치지 마세요!"로 문구를 변경했더니 클릭률이 상당히 향상되어 프로모션 기간 중 매출 증대에 기여할 수 있었습니다.
시나리오 2: 모바일 앱 사용자 여정 분석
한 핀테크 앱의 PM은 새로운 투자 상품 페이지에서 사용자들이 어디서 이탈하는지 파악하고 싶었습니다. 하지만 상세한 이벤트 설계가 되어있지 않아 분석이 어려웠고, 추가적인 이벤트 설계나 많은 개발단 리소스를 즉각적으로 확보 하기에는 어려운 상황 이었습니다.
하지만 Autocapture를 활성화하여 배포함으로써 앱 내 모든 화면 전환과 터치 이벤트를 자동 수집할 수 있었고, 퍼널 분석을 통해 상품 상세 페이지에서 약관 동의 페이지로 넘어가는 구간에서 많은 사용자가 이탈한다는 것을 발견했습니다. 확인한 결과를 토대로 약관 동의 프로세스를 간소화하고 필수/선택 항목을 명확히 구분한 결과, 전환율이 눈에 띄게 개선 되었습니다.
시나리오 3: SaaS 제품의 온보딩 최적화
B2B SaaS 그로스 매니저는 신규 사용자의 온보딩 완료율이 낮다는 것을 파악하고 있었지만, 구체적으로 어느 단계에서 문제가 발생하는지 까지는 알기 어려웠습니다.
실무자는 우선 Autocapture를 활성화하여 모든 데이터를 수집해보기로 하였고, 수집된 데이터를 통해 온보딩 각 단계별 이탈률을 분석했습니다. 특히 "팀 초대하기" 단계에서 많은 사용자들이 건너뛰거나 이탈한다는 것을 발견 했습니다. 이에 따라, "팀 초대하기" 단계를 선택사항으로 변경하고 온보딩 완료 후 다시 안내하는 방식으로 플로우를 개선한 결과, 온보딩 완료율이 상당히 증가했습니다.
(참고: 고객 초기 여정 이해하기)
👨🏻💻기본 수집 데이터
Autocapture 옵션을 활성화 하기만 하면, 고객 접속, 클릭(입력), 페이지 뷰와 같은 분석에 필수적인 데이터 뿐만 아니라, 폼 입력 시작/완료, 다운로드, UTM & 레퍼러 수집 등을 지원하고 기본적으로 페이지 URL, 타임스탬프, 사용자 디바이스 정보가 함께 수집되므로 고객들의 서비스 내 여정이나 유입 경로별 전환율 등을 바로 파악할 수 있습니다.
1. 개발단 작업(Web)
Amplitude Web SDK (2.16.1 이상)가 이미 연동되어 있다면, 개발단의 추가 작업이 필요하지 않습니다. Amplitude는 Web 자동 수집 항목을, 실제로 분석을 수행하는 실무자가, 원하는 시점에 켜고 끌 수 있도록 기능을 제공하고 있습니다.

Amplitude에 수집되는 데이터는 이벤트 볼륨을 소진하므로 실무자가 판단할 때 필요하다고 생각되는 정보만 필요한 시점에 켜고 끄면서 수집 볼륨을 효과적으로 관리하는 것이 가능합니다.
*이전 버전의 Web SDK (2.10.0 이상)를 쓰고 계시다면, 개발단에서 아래와 같이 "원격 옵션 적용"을 활성화 해주시면 동일하게 이용이 가능합니다.

2. 개발단 작업(App)
Autocapture는 Web 플랫폼에서만 제공되는 것이 아닙니다. 모바일 앱(Android, iOS)에서도 기본적으로 제공하여 고객의 앱 인스톨, 서비스의 백그라운드 <-> 포그라운드 전환, 프레그먼트 단위의 화면 전환과 클릭 등을 기본적으로 수집합니다. Android는 1.18.0 이상, iOS는 1.18.0 이상에서 Autocapture를 지원하고 있습니다. 아직 "원격 옵션"은 지원되지는 않으나 개발단에서 코드 연동 시, 옵션을 적용하여 활성화 여부를 정의하실 수 있습니다.
(Android 코드 기준)

개발단에서 활성화하여 자동으로 수집되는 정보의 수집을 막고자 하실 경우, 추가 앱 재배포 대신, 콘솔에 접근 가능한 실무자가 Block 기능을 이용하여 일시 차단이 가능합니다.

🤷🏻♀️Autocapture 정말 효과적일까?
Autocapture만 활용해도 모든 분석을 원하는 수준으로 할 수 있을까요? Autocapture는 클릭, 입력, 페이지뷰 등 사용자 행동을 개발자 개입 없이 자동으로 수집하는 매우 강력한 기능이지만, 실무에서 사용하다 보면 다음과 같은 불편함이 발생할 수 있습니다.
1. 이벤트명이 너무 포괄적이다
Autocapture는 대부분의 행동을 "Element Clicked", "Form Submitted", "Page Viewed" 등 포괄적인 이벤트명으로 기록합니다. 구체적인 행동 구분은 모두 이벤트 속성(element_text, element_id, element_classes)에 담기기 때문에, 이벤트명만 보고는 어떤 행동인지 바로 알기 어렵습니다.

결과적으로 대시보드나 리포트에서 이벤트명을 일일이 해석해야 해서 관리가 번거롭고, 데이터 이해도가 떨어질 수 있습니다.
2. 이벤트명은 일정하지만 하위 속성 정보가 바뀌어 동일 행동 판단이 어렵다
같은 버튼이었지만 UI나 페이지 구조 변경으로 element_text, element_id, element_classes 같은 하위 속성 값이 바뀌는 경우, Autocapture로 수집된 정보 상으로는 기존과 동일한 버튼인지 판단하기가 어렵습니다. 이벤트의 이름은 동일하지만, 이벤트를 구분할 수 있는 하위 정보가 서로 다른 속성 값으로 기록되어, 동일 행동인지 판단이 어려워지며 시점 간 데이터 비교나 실험 분석이 복잡해집니다. (정규 표현식 기반 그룹핑이 요구됨)

미리 정해진 규칙에 따라 자동으로 수집하는 만큼, 우리 서비스만의 커스텀 된 정보를 수집하는 부분에서는 최적의 퍼포먼스를 내기 어려울 수 있습니다. 하지만, 이러한 단점을 보완할 수 있는 다양한 기능이 Amplitude에는 존재합니다. 지금까지 확인해본 Autocapture의 장단점을 요약하면 다음과 같습니다.

📑Autocapture와 함께 쓰기 좋은 기능
Amplitude도 이러한 Autocapture의 단점을 개선하기 위해 여러 기능을 추가로 제공하고 있습니다.
1. AI 기반 이벤트명 자동 생성

Amplitude는 Autocapture 이벤트의 속성을 분석해, 사람이 이해하기 쉬운 이벤트명으로 자동 변환해주는 AI 기능을 제공합니다. 예를 들어, Element Clicked 이벤트 중 element_text="무료 체험 시작"인 경우, Clicked "무료 체험 시작" 같은 직관적인 이름으로 바꿔서 보여줍니다.
이 기능은 이벤트명을 명확하게 변경해주기 때문에 사용자 프로필 정보 내에서 고객의 여정을 확인하는 데 많은 도움을 주며, 이벤트를 선택하여 바로 차트를 생성할 수 있도록 기능을 제공합니다. 다만 이는 사용자 프로필 상에서만 지원되며, 차트에서는 직접적으로 지원 되지는 않다보니 차트에서도 변경된 이벤트명 활용을 위해서는 비주얼 라벨링 작업이 필요합니다.
2. 비주얼 라벨링 (Visual Labeling)

Autocapture로 수집되는 이벤트를 우리 서비스 화면에서 직접 명명(라벨링)할 수 있도록 하는 기능입니다. Autocapture 기능이 적용된 우리 서비스 내 페이지의 URL 정보를 기입하면 해당 페이지로 이동되며, 사이트 내 각 아이템을 클릭하는 것 만으로 Amplitude의 "AI 기반 이벤트명 자동 생성" 기능이 적용되어 이벤트 명, 수집할 프로퍼티 뿐만 아니라, 이벤트에 대한 자세한 설명(Description) 또한 자동으로 최적화하여 줍니다.
동일한 요소는 한번에 선택되어 같은 기준으로 수집이 가능하며, 실제 사이트를 눈으로 보면서 이벤트명을 설정할 수 있어 직관적이고, 개발 리소스 추가없이 실무자가
어렵지 않게 라벨 작업이 가능합니다.


🚩데이터 분석의 새로운 시대
Amplitude Autocapture는 개발자의 도움 없이도 다양한 데이터를 수집하고, 의미있는 이벤트 정의와 최적화을 지원하여 여러 Amplitude 기능과 통합되어 손쉽게 A/B 테스팅, 가이드 팝업 노출 등 서비스 내 고객과 소통하는 화면에서 즉시 최적화된 제안을 실행할 수 있습니다.
더 이상 "데이터가 없어서 분석할 수 없다"고 고민할 필요가 없습니다. Autocapture와 함께 모든 팀이 데이터 기반으로 더 나은 제품을 만들어가는 여정에 동참해보세요.
Autocapture 활용을 위한 추천 시나리오
- Amplitude 계정에서 Autocapture 활성화
- 주요 페이지/화면에서 1주일 간 데이터 수집
- 수집된 데이터로 인사이트 발견
- Web Experiment로 A/B 테스트 및 가설 검증
데이터의 힘으로 더 나은 제품을 만드는 여정, Team MAXONOMY와 바로 시작하세요.
팀 맥소노미 Amplitude 도입문의 바로가기

팀맥소노미
YOUR DIGITAL MARKETING HERO
비즈니스 성장을 위한 최적의 솔루션과 무료 데모 시연, 활용 시나리오를 제안 받아보세요
24시간 프리미엄 열람권 받기
관련 글 보기
✦퍼스트 파티(First-party) 데이터✦ 왜 중요하며, 어떻게 수집해야 할까👀
퍼스트 파티 데이터(First-party data)란, 기업의 웹 사이트 또는 모바일 앱과 같이 기업에서 소유하고 있는 채널을 통해 수집하는 고객의 정보입니다. 이메일 주소를 양식에 입력하는 것처럼, 고객이 직접 공유하는 데이터와 사이트 내 또는 인앱에서의 행동 데이터가 포함됩니다.본 게시글에서는 퍼스트 파티 데이터를 수집하여 개인화된 고객 경험을 만들고 리텐션을 개선하는 방법을 알아보겠습니다.🔎 주요 내용퍼스트 파티 데이터는 사람들이 제품 및 서비스와 상호 작용할 때 수집되는 정보입니다.고객으로부터 직접 수집한 데이터는, 세컨드 파티 또는 써드 파티 데이터 보다 제품 개선에 유용합니다.고객이 플랫폼에서 양식을 작성하거나 다른 프로세스를 완료할 때 등 고객과의 다양한 접점에서 퍼스트 파티 데이터를 수집하십시오.퍼스트 파티 데이터를 활용하여 고객 여정을 개선하고, 고객 경험을 개인화하며, 디지털 마케팅을 효율적으로 진행할 수 있습니다.퍼스트 파티 데이터란 무엇인가요?퍼스트 파티 데이터는 고객이 핵심 제품과 상호작용하는 이유에 대한 정보를 수집하는 것입니다. 반면에, 세컨드 파티 및 써드 파티 데이터는 오디언스(audience)와 외부 플랫폼 간의 상호작용으로부터 얻을 수 있습니다.퍼스트 파티 데이터에는 크게 두 가지 종류가 있습니다.엔티티(entity) 데이터: 사용자의 신원(나이, 위치, 성별 등) 및 취향(즐겨 보는 영화 장르 등)에 대한 정보이벤트 데이터(또는 행동 데이터): 사용자가 플랫폼에서 수행하는 행동(클릭, 마우스 오버, 장바구니에 담기 등)에 대한 정보개개인에 대한 퍼스트 파티 데이터를 수집하고, 그들을 그룹(또는 코호트)로 정렬하여 분석할 수 있습니다. 예를 들어, 플랫폼을 사용하는 동일한 조직의 사용자 그룹이 있을 수 있습니다. 그렇다면 코호트 분석을 통해 그들을 하나의 그룹으로 분석할 수 있죠. 혹은 '첫 주에 알림을 활성화했거나 친구와 플레이리스트를 공유한 사용자'와 같이 사용자 행동을 기반으로 코호트를 만들 수도 있습니다.퍼스트 파티 데이터의 중요한 특징은 이 데이터가 조직에 속해 있다는 점입니다. 여러분은 이를 직접 수집하고, 저장하고, 관리하게 됩니다. 즉, 데이터를 수집하는 방법을 직접 결정함으로써, 데이터의 정확성과 합법성을 보장할 수 있습니다. 이는 세컨드 파티 및 써드 파티 데이터와의 차이점입니다.퍼스트 파티 데이터 vs 제로 파티 데이터고객이 적극적으로 공유하는 정보(설문조사, 고객 피드백 응답 등)를, 사람들은 제로 파티 데이터라고 부르기 시작했습니다. 제로 파티 데이터는 유용한 인사이트를 주지만, 고객이 직접 제출한 정보이기 때문에 부정확할 수 있습니다.예를 들어 누군가는 공포 영화 장르를 좋아한다고 응답했지만, 사실은 대부분의 시간을 로맨틱 코미디 장르를 보면서 보낼 수도 있습니다. 마찬가지로 대부분의 사용자가 '이 플랫폼을 친구나 동료에게 추천할 의향이 있나요?'라는 항목에 '매우 그렇다'라고 응답하더라도, 실제로 '친구 추천 프로그램(refer-a-friend)'을 사용하는 사람은 극히 일부에 불과합니다.이 글에서는 제로 파티 데이터를 퍼스트 파티 데이터의 한 유형으로 다룹니다. 이는 제품을 기반으로 하는 고객과의 직접적인 관계에서 비롯되며, 귀사는 이 데이터를 직접 소유하게 됩니다.퍼스트 파티 데이터 vs 세컨드 파티 데이터세컨드 파티 데이터는 소셜 미디어나 광고사 같은, 신뢰할 수 있는 파트너로부터 얻은 데이터입니다. 이 데이터는 기본적으로 다른 조직의 퍼스트 파티 데이터이고, 이것이 공유되면 여러분에게는 세컨드 파티 데이터가 되는 것이죠. 세컨드 파티 데이터를 수집했을 때의 이점은 그동안 수집한 데이터를 보완하여 더욱 큰 규모의 데이터로 만들어낼 수 있다는 것입니다.가장 흔한 시나리오는 파트너 조직이 여러분의 플랫폼 사용자일 수도 있고, 아닐 수도 있는 사용자의 데이터를 수집하여, 여러분이 해당 데이터를 활용하여 조치를 취할 수 있도록 귀사와 공유하는 것입니다. 예를 들면, 퍼블리셔는 자사의 웹사이트에 광고를 게재하고 싶은 광고주와 자사의 오디언스에 관한 퍼스트 파티 데이터를 공유할 수 있습니다.퍼스트 파티 데이터 vs 써드 파티 데이터써드 파티 데이터는 데이터 집계기(aggregator)로부터 수집하는 데이터입니다. 써드 파티 데이터 공급자들은 세컨드 파티 데이터를 그룹화 하고 정리합니다.써드 파티 데이터 셋(Data Sets)은 인구 통계학 정보, 특정 산업 종사자 등 일반적인 그룹에 대한 정보를 제공할 수 있습니다. 그러나 데이터의 수집 시기 또는 방법과 같은 데이터 원본 소스에 대한 세부 정보는 알 수 없습니다.써드 파티 데이터는 일반적으로 스노우플레이크(SnowFlake) 마켓 플레이스와 같은 온라인 플랫폼을 통해 구매할 수 있습니다. 써드 파티 데이터 공급자는 데이터 사이언티스트와 분석가가 더 많은 실시간 데이터 셋과 즉시 쿼리를 할 수 있도록 준비된 데이터 셋에 액세스할 수 있도록 데이터 교환 기능을 제공합니다. 그러나 문제는, 여러분이 구매할 수 있는 데이터라면, 경쟁사에서도 구매할 수 있겠죠. 그러니 이 데이터 셋이 귀사에 큰 경쟁 우위를 제공하지는 않습니다.써드 파티 데이터는 써드 파티 쿠키를 통해서도 얻을 수 있습니다. 데이터 집계자는 다른 조직에 일정 비용을 지불하고 쿠키를 통해 사이트 방문자를 트래킹합니다. 하지만 구글이 써드 파티 쿠키 지원을 중단할 것이라 밝히면서, 이러한 관행은 곧 종료될 예정입니다.최근 몇 년 동안 유럽 연합과 미국의 여러 주들도 데이터 수집, 데이터 개인 정보 보호, 데이터 공유에 관해 GDPR(일반 개인정보 보호법), CCPA(캘리포니아 소비자 개인정보 보호법)와 같은 더욱 엄격한 법률을 통과시켰습니다. 이러한 법적인 영향으로 인해 조직에서 데이터를 수집하고 공유하는 것이 점점 더 어려워지고 있는 실정입니다.(참고: AI 시대 속 개인정보 보호 - 1단계 인식변화)[🔖요약] 퍼스트파티 데이터 vs 세컨드 파티 데이터 vs 써드 파티 데이터퍼스트 파티(First-party) 데이터: 고객들로부터 얻을 수 있는 정보로, 귀사에서 직접 수집한 데이터와 고객들이 직접 공유하는 정보를 포함합니다.세컨드 파티(Second-party) 데이터: 데이터 파트너 또는 데이터 공급자로부터 제공되는 정보입니다.써드 파티(Third-party) 데이터: 세컨드 파티 데이터들을 그룹화하는 데이터 집계기로부터 얻을 수 있는 정보입니다.퍼스트 파티 데이터의 종류제품 내에서 수집하는 데이터는 모두 퍼스트 파티이기 때문에, 퍼스트 파티 데이터에도 다양한 유형이 있습니다. 다음은 퍼스트 파티 데이터의 주요 유형의 예시입니다.사용자 속성사용자 속성에는 사용자의 이름, 나이, 위치를 비롯하여 주소, 전화번호와 같은 개인정보 등이 포함됩니다. 사용자가 귀사의 제품에 등록하거나 양식을 작성할 때 또는 웹 분석을 통해 사용자의 속성 정보를 수집할 수 있습니다.사용자의 선호도 및 관심사퍼스트 파티 데이터 수집의 또 다른 이점은 다양한 데이터 포인트를 통해 고객의 선호도 및 관심사에 대한 정보를 파악할 수 있다는 점입니다. 예를 들어, 귀사의 플랫폼에서 하루에 3시간 이상 뷰티 튜토리얼을 시청하는 사용자는 아마도 헤어, 메이크업 제품에 관심이 있을 것이라고 파악할 수 있습니다.또는 일주일에 여러 번 청구서 템플릿을 사용하는 그룹을 발견했을 수도 있습니다. 그렇다면 그들은 청구서 템플릿이 유용하다고 생각하며, 유사한 템플릿에 관심이 있을 것이라고 가정할 수 있습니다.고객의 행동사용자의 행동 또한 퍼스트 파티 데이터입니다. 다양한 이벤트를 트래킹하고 분석함으로써, 사람들이 플랫폼과 상호작용하는 방식을 이해할 수 있습니다. 예를 들면 다음과 같습니다.사용자가 사이트의 여러 페이지에서 보내는 시간사용자가 여러 기능을 사용하는 빈도사용자가 클릭한 버튼이나 링크사용자가 완료한 프로세스(등록 또는 회원가입, 구독 업그레이드 등)코호트 분석을 사용하여 사용자를 행동에 따라(행동 코호트) 다른 그룹으로 분류할 수 있습니다. 위에서 언급했던 청구서 템플릿 예시로 살펴보면, 이러한 템플릿을 이용하는 사용자가 그렇지 않은 사용자보다 고객 생애 가치(CLV: Customer Lifetime Value)가 더 높다는 가설을 세울 수 있습니다.위의 Amplitude(앰플리튜드) 매출 LTV 차트는 청구서 템플릿을 사용하는 사용자(파란색)의 CLV가 그렇지 않은 사용자(초록색)보다 높다는 가설을 확인시켜 줍니다. 그 다음으로 해야 할 작업은 고객 여정의 초기 단계에 청구서 템플릿의 표지를 바꾸는 A/B 테스트를 실시하여 CLV를 높이는 것입니다.퍼스트 파티 데이터는 왜 중요할까요?식사를 할 때는, 식재료가 어디에서 왔는지를 아는 것이 중요합니다. 그래야 몸에 해로운 것들을 먹지 않을 수 있죠. 데이터도 마찬가지입니다. 부정확할 수 있거나 품질이 낮은 정보는 비즈니스 의사 결정에 있어 큰 피해를 초래할 수 있기 때문에 조직에 유입되어서는 안됩니다.퍼스트 파티 데이터 수집의 주요 이점은 조직에서 데이터를 수집하고, 분석하고, 활성화하는 방법을 처음부터 끝까지(end-to-end) 완벽하게 제어할 수 있다는 점입니다. 즉, 해당 데이터의 품질과 정확성을 확신할 수 있으며, 다른 파트너나 써드 파티 조직에 의존할 필요도 없습니다. 다만 모든 개인 정보 보호법 및 규정을 준수해야 하고, 데이터를 수집하기 전에 사용자로부터 적절한 동의를 얻었는지 확인해야 합니다.또한 퍼스트 파티 데이터를 활용하면 유연성을 확보할 수 있습니다. 데이터를 업데이트하고, 추가하고, 다양한 오디언스 세그먼트와 코호트를 만들어낼 수도 있습니다. 이는 다른 조직에서 정보를 얻는 경우에는 불가능한 영역입니다.마지막으로, 퍼스트 파티 데이터는 본질적으로 고객 및 제품과의 관련성이 매우 높습니다. 여러분이 수집하는 모든 인사이트는 플랫폼에 따라 다르므로, 이를 활성화하고 자사 데이터 전략을 만들어 앱과 웹 사이트를 개선할 수 있습니다.퍼스트 파티 데이터는 다음과 같이 활성화할 수 있습니다.고객 여정에서의 마찰 지점을 찾아내고 해결함으로써 고객 경험과 리텐션을 개선합니다.다양한 오디언스 및 코호트의 선호도에 맞게 제품을 조정함으로써 개인화된 경험을 만드십시오.마케팅 예측(forecasting)을 활용하여 고가치 사용자를 식별하고, 광고를 리타겟팅하거나, 획득(acquisition) 채널에 더욱 집중함으로써 마케팅 효과를 높일 수 있습니다.퍼스트 파티 데이터는 어떻게 수집해야 할까요?제품에서의 클릭, 뷰, 프로세스와 같은 이벤트를 추적하고 고객이 플랫폼과 상호 작용하도록 유도하여 퍼스트 파티 데이터를 수집할 수 있습니다. 추적할 이벤트와 수집할 데이터를 결정하기 위해서는, 먼저 고객과 그들의 제품 사용에 대한 질문 리스트를 만들어야 합니다. 그 다음 질문의 답을 찾는데 도움이 되는 이벤트와 이벤트 속성을 정의합니다. 어떤 이벤트를 추적하면 좋을지 결정하는 기준에 대한 자세한 내용은 Amplitude(앰플리튜드)의 이벤트 추적 블로그 글을 참고 하십시오. 고객으로부터 유용한 데이터를 수집할 수 있는 접점은 다음과 같습니다.사용자 등록(회원가입): 사용자가 플랫폼에 등록할 때 데이터를 수집합니다. 소셜 로그인을 통해 페이스북이나 구글과 같은 기존 계정으로 로그인할 수도 있습니다. 이를 통해 사람들이 더욱 쉽게 로그인하고 프로필을 귀사와 공유할 수 있습니다.리드 생성 양식: 더 많은 정보를 수집하려면 리드 생성 양식을 사용하여 일반적인 등록 또는 온보딩 정보보다 더 많은 세부적인 정보를 공유하도록 사용자에게 요청하십시오. 예를 들어, 고객에게 유용한 백서(Whitepaper)를 다운로드 할 수 있는 권한을 부여하고, 그 대가로 어떤 업계에 종사하고 있는지, 그 회사의 규모는 어느 정도인지 공유하도록 하는 유인책을 만들 수도 있습니다.대화형 콘텐츠: 사용자가 대화형 콘텐츠를 통해 더 많은 세부 정보를 공유하도록 유도합니다. 설문 조사나 대화형 설문(챗봇 등)과 같은 사용자를 위한 재미있는 경험을 제공하여, 사용자의 관심사와 선호도에 대한 많은 정보를 수집합니다.퍼스트 파티 데이터 관리 도구데이터를 수집, 처리 및 분석하기 위한 여러 가지 데이터 관리 플랫폼이 있습니다. 조직의 규모와 유형, 그리고 특정 데이터 요구사항에 따라 귀사에 가장 알맞은 솔루션은 달라질 수 있습니다.Amplitude (앰플리튜드)Amplitude(앰플리튜드) CDP(Customer Data Platform)를 사용하여 다양한 유형의 데이터를 수집하고 구성할 수 있습니다. CDP는 Amplitude(앰플리튜드) 분석과 완벽하게 통합되어 있으므로, 데이터를 다운스트림으로 쉽게 전송하여 마케팅 또는 제품 전략에 따라 분석하고 활성화할 수 있습니다.Amplitude(앰플리튜드)를 사용하면 데이터를 다양한 오디언스(코호트)로 세분화하여 셀프 서비스 분석을 실행하고 귀중한 인사이트를 수집할 수 있습니다. 이 플랫폼은 사용이 쉬우며, 조직이 데이터 중심으로 운영될 수 있도록 도와줍니다. 또한 데이터 사일로를 제거하고, 모든 조직의 구성원들이 데이터 인사이트에 액세스하여 업무에 활용할 수 있도록 지원합니다.기타 데이터 관리 도구Google AnalyticsMatomoSEMrushSegmentSteam콘텐츠 더 읽어보기Google 쿠키리스 연기와 퍼스트파티 데이터의 미래🍪제로파티(Zero-Party) 데이터란?[패널 토크] The all new Data-driven Marketing
GA4 vs Amplitude 비교하기
데이터 분석 시대, GA4만으로 충분할까?이제 거의 모든 비즈니스에서 디지털 역량은 필수 요소로 자리잡았습니다. 전통적인 제조업부터, 리테일, 물류, 심지어 외식업까지 디지털 서비스가 배제되는 산업이 없는데요. 이제 소비자는 앱이나 웹을 통해 식당을 예약하고, 내 물건이 어디까지 배송되었는지 확인하고, 마트에 방문하기 전에 원하는 물건이 있는지 확인합니다.이런 환경 속, 고객 경험 이해는 기업 경쟁력의 핵심이 되었습니다. 고객이 우리 서비스 안에서 무엇을 하고 어떤 점을 좋아하고 어떤 점에 불만을 느끼는지 명확히 알 수 있다면, 최적화 전략을 쉽게 도출할 수 있기 때문입니다.고객 경험 이해를 위한 대표적인 도구로 GA4(Google Analytics 4)와 Amplitude가 있는데요. 그중 GA4는 현재 가장 많은 시장 점유율을 가진 분석 솔루션입니다. 아무래도 무료로 제공되던 구글의 UA(Universal Analytics)로 분석을 시작하는 기업이 많았고, UA 지원이 종료되며, 자연스럽게 GA4를 사용하게 된 것이 아닐까 추측됩니다.하지만 GA4에는 여러 아쉬운 점들을 찾아볼 수 있습니다. 예를 들어, 개인화된 데이터 추적이나 고객 라이프사이클 추적 영역에서는 기능이 다소 제한적입니다. 다른 3rd party 데이터와의 통합과 유연성 측면들에도 아쉬움이 많습니다.제품 분석 솔루션 역사 이해하기GA4가 왜 이런 영역에서 유독 약한 모습을 보이는지 이해하기 위해서는 분석 솔루션의 역사를 살펴볼 필요가 있습니다.사실 GA4의 근간이 되었던, UA는 디지털 광고, UTM과 같이 신규고객 유입(User Acquisition) 중심의 퍼포먼스 마케팅 솔루션입니다. 때문에 세션 기반의 로그 데이터를 수집하는 형태로 작동하였죠. 당시 마케팅은 유저를 최대한 많이 유입시키는 것에 초점이 맞추어져있었고, UA는 이에 최적화된 솔루션으로 인기가 많았습니다.하지만 Amplitude가 시장에 출시되고, 기존의 세션 기반이 아닌, 이벤트 기반의 데이터 분석 방식을 처음 제안하였습니다. 이벤트 기반의 데이터 분석은 특히 모바일 앱 환경에서 사용자의 면밀한 행동 분석을 가능하게 하였고, 모바일 시장의 성장과 함께 Amplitude도 폭발적으로 성장할 수 있었습니다. 이때부터 마케팅의 영역이 유저 유입을 넘어, 유저 활성화, 리텐션, 수익화 등 훨씬 넓은 영역으로 확장되었습니다.이런 변화에 맞추어 구글은 기존 UA를 종료하고, 이벤트 기반의 GA4를 새롭게 출시하였습니다. Amplitude에 비하면, 여전히 퍼포먼스 분석 위주의 기능을 제공하며, 유저 라이프 사이클을 추적하는 데 있어서 다소 아쉬운 모습을 보이고 있습니다.Amplitude는 단순 분석 도구가 아니다Amplitude는 단순히 데이터를 수집하고 시각화하는 도구가 아닙니다. 고객의 획득 > 참여 > 전환 > 유지 > 성장에 이르는 고객 여정 전체를 설계하고, 이 여정에서 획득한 데이터를 제품 기획자, 마케터, 개발자 등 누구라도 쉽게 다룰 수 있는 통합 디지털 경험 플랫폼입니다.실시간 개인화 및 실시간 데이터 분석 대시보드를 통해 A/B 테스트와 같은 실험을 설정하고, 그 데이터들을 곧바로 분석80개 이상의 마케팅 플랫폼들과 네이티브 연동을 지원하며, 채널별 획득 데이터들의 리텐션 효과 분석 가능고객 전체 여정의 분석에 최적화되어, 첫 방문부터 재구매까지 사용자 ID 기반으로 고객의 라이프사이클 분석 가능 현재 Amplitude의 대표적 고객인 버거킹은 과거에는 GA4를 이용했지만, Amplitude로 전환하고 통합된 데이터를 기반으로 실험과 지속적인 개인화를 실행하며 전환율과 재구매율을 끌어올리고 있습니다." 우리는 버거 회사입니다. 버거가 바로 우리의 제품입니다. 웹사이트가 아닙니다. 하지만 경쟁력을 유지하려면 단순히 와퍼를 판매하는 것 이상의 노력을 기울여야 합니다. 오늘날 우리는 그 어느 때보다 사람들이 버거킹 브랜드를 통해 어떤 경험을 할지, 그리고 그 경험이 의미 있고 감정적인 유대감을 형성할 수 있을지 고민하고 있습니다. " - 엘리 자비스, Restaurant Brands International(버거킹) 기술 제품 관리 부사장이미지 출처: Amplitude | 개인화된 할인을 제공하는 버거킹버거킹의 고객 여정 개선은 크게 다음의 프로세스들로 이루어졌습니다.오퍼(주문) CTA 클릭을 유도하는 A/B 테스트장바구니 금액 기준, 고객별 개인화된 할인 제공Amplitude 코호트 기능을 통해 이탈 및 특정 행동 고객에게 푸시 알림 발송마치며글로벌 대표 컨설팅펌 브레인 앤 컴퍼니(Bain & Company)의 연구 결과에 따르면, 80% 이상의 기업이 고객들에게 훌륭한 경험을 제공한다고 스스로 평가했지만, 실제 훌륭한 경험을 제공받았다 생각하는 고객은 단 8%에 불과했습니다.고객 유입 마케팅의 한계를 엿볼 수 있는 부분이자, 고객 경험 관리의 중요성을 대변해주는 자료입니다. 여전히 많은 마케터분들이 캠페인 성과 측정과 유입 분석을 위해 GA4를 이용 중일 것입니다. 하지만 유입 데이터만으로는, 구체적인 액션으로 연결하지 못하고, 고객을 제대로 이해하지 못합니다.바로 지금이 진정한 고객 경험을 이해하기 위한 최적의 시기입니다. Amplitude에 대해 궁금하신 게 있다면, Team MAXONOMY에 문의하세요. 성실히 안내 도와드리겠습니다. 문의하기콘텐츠 더 읽어보기[FAQ] GA에서 Amplitude로 전환하기UA 서비스 중단 대처 가이드북[FAQ] 구글 UA종료 & GA4 전환에 대해 궁금한 모든 것분석 솔루션, 여러 개 써도 되나요?
Amplitude는 Google Analytics와 어떤 점이 다른가?
Amplitude VS GA 차이점 알아보기
전환율(Conversion Rate)이란?🔍(feat. 전환율 계산 및 개선법)
전환율(Conversion Rate)이란?전환율이란, 마케팅 활동이나 특정 행동 유도(Call to Action)에 반응하여 원하는 행동을 취한 사용자의 비율을 의미합니다. 여기서 전환으로 간주되는 행동은 비즈니스 목표에 따라 다양할 수 있으며 제품 구매, 회원가입, 구독 등이 대표적인 전환입니다. 전환율을 구하는 공식은 다음과 같습니다.전환율 = (전환 수 / 방문자 수) x 100전환율은 캠페인, 웹사이트, 판매 채널의 효과에 대한 중요한 인사이트를 제공하여, 마케팅 전략을 수립하는 데 유용하게 사용할 수 있습니다. 높은 전환율은 사용자들이 대체로 긍정적인 경험을 하고 있음을 나타내며, 낮은 전환율은 개선의 여지가 있음을 시사합니다전환율 계산 방법앞서 설명 드렸듯, 전환율은 전환 수에 방문자 수를 나누어 구할 수 있는데요. 방문자가 따로 없는 경우는 '방문자 수' 대신 '기회 수'를 넣어 계산할 수 있습니다. 전환율을 구하는 상세한 과정은 다음과 같습니다.전환 이벤트 확인: 전환으로 측정할 구체적인 행동을 정합니다. 예를 들어 구매, 회원가입, 구독, 특정 링크 클릭 등이 전환 이벤트가 될 수 있습니다.데이터 수집: 전환 수와 특정 기간 동안의 방문자 수(혹은 전환될 기회의 수)를 수집합니다.공식 적용: 숫자를 공식에 대입합니다. 예를 들어 1,000명의 방문자 중 60번의 전환이 발생했다면 다음과 같이 계산할 수 있을 것입니다.전환율 = (60 / 1,000) x 100 = 6%전환율이 중요한 이유비즈니스에서 가장 중요한 것 중 하나는 결과를 확인하는 것입니다. 어떤 결과가 있었는지, 그 결과가 비즈니스에 어떤 의미를 가지는지 이해하고 개선점을 찾아 적용해야 합니다. 전환율(Conversion Rate)은 비즈니스가 성공하고 있는지, 구체적으로 어떤 모습으로 성공하고 있는지 잘 보여주는 지표입니다. 전환율을 추적하고 관리한다면 다음과 같은 이점을 얻을 수 있습니다.마케팅 캠페인의 효율성 측정: 전환율을 통해 마케팅 캠페인이 얼마나 효과적인지 평가할 수 있습니다.수익 흐름의 건강 상태 파악: 전환율을 통해 수익 창출 경로가 잘 작동하고 있는지 확인할 수 있습니다.판매 퍼널에서 개선이 필요한 부분 발견: 전환율은 고객이 구매로 이어지는 과정에서 약점이나 개선이 필요한 부분을 식별하는 데 도움을 줍니다.마케팅 채널 및 캠페인 전략에 대한 의사 결정: 전환율을 분석하면 어떤 채널과 캠페인이 가장 효과적인지에 대한 판단을 할 수 있어, 더 나은 전략 수립이 가능합니다.투자 대비 수익(ROI)을 극대화할 수 있도록 마케팅 캠페인을 최적화: 전환율을 높임으로써 ROI를 높일 수 있는 방향으로 캠페인을 조정하고 최적화할 수 있습니다.이처럼 전환율은 마케팅 활동의 성과와 수익성을 높이는 데 핵심적인 역할을 합니다.어떤 전환 이벤트(Conversion Event)를 설정할 수 있을까?전환 이벤트(conversion event)는 가치 있다고 여겨지는 고객의 모든 행동이나 활동을 의미합니다. 제품 구매, 회원가입, 구독이 대표적이지만, 비즈니스 목표나 시장, 제품 유형 등에 따라 다양하게 정의될 수 있습니다.전환 이벤트를 설정할 때는 비즈니스 또는 마케팅 캠페인의 구체적인 목표 및 핵심 성과 지표(KPI)에 맞춰 설정하는 것이 좋습니다. 쉽게 말해 성공적인 결과로 이어지는 사용자 행동을 선택해야 하죠. 실제 실무에서 자주 사용되는 전환 이벤트의 예시는 다음과 같습니다.실제 구매 완료(주로 이커머스 서비스)회원 가입소프트웨어 체험판 및 e북을 다운로드앱 다운로드 및 실행뉴스레터 구독랜딩 페이지나 특정 기사 페이지에서 일정 시간 이상 머무는 행동정기적으로 사이트에 방문하는 행동소셜 미디어 게시물에 좋아요를 누르거나 공유하는 행동광고를 클릭하여 사이트에 방문하는 행동이처럼 전환 이벤트는 다양한 사용자 행동을 추적할 수 있으며, 비즈니스 성과를 높이는 데 중요한 역할을 합니다.이상적 전환율이상적 전환율은 산업, 전환 이벤트의 유형, 사이트 트래픽의 품질, 타겟 리드의 정확성에 따라 크게 달라질 수 있으며, 일괄적으로 적용되는 기준은 없습니다. 이 외에도 제품, 타겟 고객, 시장 경쟁력, 사이트 품질 등 다양한 요소가 전환율 수치에 영향을 줍니다.일반적으로는, 목표 성과 및 기대치를 기준으로 전환율의 좋고 나쁨을 평가할 수 있습니다. 종종 벤치마크 데이터를 참고 지표로 사용하기도 합니다. 예를 들어, 이커머스 기업의 평균적인 전환율은 약 2-3% 수준입니다. 5% 이상의 전환율을 달성한 기업이 있다면, 전환율 지표가 굉장히 좋다고 볼 수 있겠죠.전환율은 단순히 1회성 측정에서 끝나는 것이 아닌 지속적으로 추적하고 개선하는 것이 중요하며, 이를 통해 점진적인 성장과 최적화를 목표로 해야 합니다. '최고의 전환율'은 비즈니스의 목표와 업계 표준에 부합하면서도 지속적인 개선이 있어야 합니다.전환율 최적화(CRO) 방법전환율 최적화(CRO)는 전환을 증가시키기 위해 제품(서비스)이나 캠페인을 개선하는 활동을 의미합니다. 주로 사용자 행동을 분석하고, 제목, 이미지, CTA 버튼과 같은 요소를 테스트하는 등 데이터 기반의 조정이 필요합니다. 때문에 일반적으로는 A/B 테스트, 사용자 조사, 데이터 분석, 반복 실험 등의 방법을 사용하여, 사용자 여정을 최적화합니다. 이를 통해 전환율 지표를 개선할 수 있으며, 궁극적으로 수익, 리드 및 기타 KPI를 증가시키는 효과가 있습니다. 다음은 실제 실무에서 적용할 수 있는 전환율 최적화 방법입니다.고객 또는 사용자 페르소나(persona) 만들기: 고객 페르소나를 통해 타겟 고객의 욕구, 필요, 문제를 더 잘 이해하고 이를 바탕으로 전환율을 개선할 수 있습니다.A/B 테스트: 랜딩 페이지, 마케팅 콘텐츠, 제품 설계 등의 여러 버전을 테스트하여 어떤 버전이 더 성과가 좋은지 파악하는 방법입니다. 성과가 더 좋은 선택지를 찾아 적용하고, 이 과정으로 반복하여 캠페인과 제품을 고객이 원하는 형태에 맞게 지속 개선할 수 있습니다.명확한 행동 유도(call-to-action, CTA): 웹사이트의 각 페이지에는 방문자에게 원하는 행동을 명확히 안내하는 매력적인 CTA가 필요합니다. 해당 CTA를 개선하여 전환율을 직접적으로 개선할 수 있죠. 앞서 설명드린 페르소나, A/B테스트 기법을 활용할 수 있습니다.페이지 로딩 속도와 고객 경험 개선: 로딩이 느리거나 사용자 경험이 좋지 않은 웹사이트는 방문자의 전환을 저해할 수 있습니다.소셜 프루프(social proof) 활용: 소셜 프루프는 고객 리뷰, 후기, 수상 경력, 소셜 미디어 공유 등을 포함하며, 사이트의 신뢰성과 신뢰감을 높이는 방법입니다.Amplitude를 활용한 전환율 극대화Amplitude는 제품 분석 업계의 리더로서, 단순히 데이터를 분석하는 것에서 그치지 않고, 이를 실제 전략으로 전환하는 방법을 제시해줍니다. Amplitude의 데이터 분석 및 사용자 행동 추적 도구를 활용해 전환율을 극대화해보세요. Amplitude는 전환율을 극대화할 수 있는 다양한 기능과 노하우를 제공합니다. 비즈니스의 모든 영역에 대한 상세한 데이터를 제공하고, 고객의 행동을 분석하고, 어떤 요소가 고객의 관심을 끄는지에 대한 데이터를 수집할 수 있습니다. 콘텐츠 더 읽어보기퍼널(Funnel) 분석과 사용 사례전환(Conversion) 뜻, 의미, 정의, 종류구매 전환율을 높이는 6가지 전략





